Multiple sclerosis (International Multiple Sclerosis Genetics Consortium, 2019) International Multiple Sclerosis Genetics Consortium, et al. Science Inflammation Autoimmunity ## STUDY SUMMARY Identification of 233 novel variants associated with multiple sclerosis and the body's immune response system. ### YOUR RESULT ### STUDY DESCRIPTION Multiple sclerosis is an autoimmune disease that leads to degeneration of the central nervous system. It's characterized by damage to the nerves that can lead to problems with vision, movement, and speech. This study analyzed the genetic data of 115,803 individuals of European ancestry and discovered 233 variants that appear to correlate with a risk of developing multiple sclerosis. These variants help explain ~48% of the heritability of multiple sclerosis. Many of these variants are located near genes that are expressed in the brain and play a role in <u>antigen</u> recognition by the immune system. To date, this is the largest genome-wide association analysis of multiple sclerosis and it explains almost half of the genetic contribution to the disease risk. #### DID YOU KNOW! Though multiple sclerosis cannot be cured, doctors recommend lowering inflammation levels by maintaining a healthy diet (e.g. mediterranean diet rich in fish, whole grains, fruits, vegetables and olive oil) and exercising regularly. ## YOUR DETAILED RESULTS To calculate your genetic predisposition to multiple sclerosis we summed up the effects of genetic variants that were linked to multiple sclerosis in the study that this report is based on. These variants can be found in the table below. The variants highlighted in green have positive effect sizes and increase your genetic predisposition to multiple sclerosis. The variants highlighted in blue have negative effects sizes and decrease your genetic predisposition to multiple sclerosis. Variants that are not highlighted are not found in your genome and do not affect your genetic predisposition to multiple sclerosis. By adding up the effect sizes of the highlighted variants we calculated your polygenic score for multiple sclerosis to be 1.48. To determine whether your score is high or low, we compared it to the scores of 5,000 other Nebula Genomics users. We found that your polygenic score for multiple sclerosis is in the 20th percentile. This means that it is higher than the polygenic scores 20% of people. We consider this to be a below average genetic predisposition to multiple sclerosis. However, please note that genetic predispositions do not account for important non-genetic factors like lifestyle. Furthermore, the genetics of most traits has not been fully understood yet and many associations between traits and genetic variants remain unknown. For additional explanations, click on the column titles in the table below and visit our Nebula | Library tutorial. VARIANT [©] | YOUR GENOTYPE [®] | EFFECT SIZE [®] | VARIANT FREQUENCY [©] | SIGNIFICANCE [®] | |---|----------------------------|--------------------------|--------------------------------|---------------------------| | rs1071743_G | G / G | | VARIANTI FREQUENCY™ | 1.05 × 10 ⁻²⁸⁰ | | | | -0.37 (↓) | | 2.19 × 10 ⁻¹³¹ | | rs3097671_C | G / G | 0.29 (-) | 14% | | | rs2844482_A | NA
O / O | 0.30 (-) | < 1% | 7.13 × 10 ⁻¹²⁴ | | rs4081559_T | C/C | 0.27 (-) | 11% | 4.69 x 10 ⁻⁸² | | rs10801908_C | C/C | 0.26 (↑) | 69% | 4.55 x 10 ⁻⁷⁰ | | rs11256593_T | C/T | 0.19 (1) | 42% | 2.96 x 10 ⁻⁶⁵ | | rs9266629_C | Т/Т | -0.20 (-) | 17% | 8.88 x 10 ⁻⁵⁷ | | rs438613_C | T/C | 0.14 (1) | 37% | 2.31 x 10 ⁻⁴⁹ | | rs1800693_T | Т/Т | -0.14 (↓) | 64% | 2.24 × 10 ⁻⁴⁷ | | rs7454108_C | Т/Т | 0.22 (-) | 86% | 1.70 × 10 ⁻⁴¹ | | rs6670198_C | Т/Т | -0.13 (-) | 43% | 1.54 x 10 ⁻³⁶ | | rs62420820_A | G / A | 0.13 (1) | 19% | 9.26 x 10 ⁻³⁶ | | rs1738074_T | Т/Т | -0.12 (↓) | 50% | 3.48 x 10 ⁻³⁵ | | rs35540610_C | T/C | 0.13 (1) | 21% | 2.98 x 10 ⁻³³ | | rs1323292_A | A / A | 0.15 (1) | 86% | 3.64 x 10 ⁻³³ | | rs1077667_C | C/C | 0.14 (1) | 80% | 7.88 × 10 ⁻³³ | | rs35486093_A | A / A | -0.19 (↓) | 90% | 2.27 x 10 ⁻³¹ | | rs2150879_G | G / A | 0.11 (1) | 58% | 4.05 x 10 ⁻³¹ | | rs701006_G | A / G | 0.12 (1) | 56% | 9.63 x 10 ⁻³¹ | | rs11809700_C | C / T | -0.12 (↓) | 70% | 2.95 x 10 ⁻³⁰ | | rs9843355_G | G / G | 0.14 (1) | 81% | 4.14 × 10 ⁻³⁰ | | rs4939490_G | G / G | 0.12 (1) | 38% | 2.00 x 10 ⁻²⁹ | | rs4896153_A | A / A | -0.11 (↓) | 70% | 2.72 x 10 ⁻²⁹ | | rs72928038_G | G / A | -0.14 (↓) | 90% | 8.38 x 10 ⁻²⁹ | | rs10063294_A | G / A | -0.12 (↓) | 59% | 1.58 x 10 ⁻²⁸ | | rs1026916_G | A / G | -0.11 (↓) | 57% | 2.32 x 10 ⁻²⁸ | | rs1014486_C | c/c | 0.10 (1) | 39% | 3.13 × 10 ⁻²⁸ | | rs11751659_G | A/G | 0.16 (1) | 12% | 5.75 x 10 ⁻²⁸ | | rs11079784_C | T/C | 0.10 (1) | 46% | 1.99 x 10 ⁻²⁷ | | rs6589706_A | G / G | 0.10 (-) | 38% | 4.53 × 10 ⁻²⁶ | | rs11749040_G | G / G | -0.14 (↓) | 84% | 4.54 x 10 ⁻²⁵ | | rs631204_A | 0/0 | 0.11 (-) | 44% | 4.92 × 10 ⁻²⁵ | | rs4808760_G | c/c | -0.11 (-) | 76% | 5.83 x 10 ⁻²⁵ | | rs12478539_G | G/C | 0.11 (1) | 75% | 1.65 x 10 ⁻²⁴ | | rs58166386_G | A / A | 0.10 (-) | 38% | 4.42 × 10 ⁻²⁴ | | rs7977720_C | C/T | -0.09 (↓) | 47% | 4.96 × 10 ⁻²⁴ | | rs34947566_C | C/C | 0.14 (1) | 88% | 1.30 × 10 ⁻²³ | | rs1250551_G | G / T | -0.10 (↓) | 69% | 1.68 × 10 ⁻²³ | | rs114071505_C | G / G | -0.25 (-) | 5% | 3.84 x 10 ⁻²² | | March Marc | | | | | | |---|--------------|-------|-----------------------|-----|--------------------------| | MATERIAN TOTAL MATERIAN M | rs28703878_A | A / A | -0.10 (↓) | 66% | 5.27 x 10 ⁻²² | | Martin M | rs3809627_A | C / A | -0.09 (↓) | 42% | 1.23 x 10 ⁻²¹ | | Marchane 177 1817 1817 1816 1818 | rs140522_C | т/т | -0.11 (-) | 63% | 1.31 x 10 ⁻²¹ | | Section 1,77 | | A / A | | 40% | 3.18 x 10 ⁻²¹ | | 12570564_C | | | | | | | 1437004.3 | | | | | | | March 1978 | | | | | | | MEMBER M. M. M. M. M. M. M. M | | | | | | | 195000000000000000000000000000000000000 | | | | | | | 1999
1999 | rs2327586_T | | | | | | | rs12925972_C | Т/Т | 0.10 (-) | 50% | | | SECONT_C 9/8 | rs9610458_T | C/T | 0.09 (1) | 46% | 1.16 × 10 ⁻¹⁹ | | 1975 | rs9591325_T | T/C | 0.21 (↑) | 94% | 1.26 x 10 ⁻¹⁹ | | ## 177020_0 | rs2248137_G | G / G | -0.09 (↓) | 48% | 1.92 x 10 ⁻¹⁹ | | NETHERS C | rs12365699_G | G/G | 0.12 (1) | 87% | 2.10 × 10 ⁻¹⁹ | | | rs1177228_G | G / G | 0.09 (1) | 78% | 2.31 x 10 ⁻¹⁹ | | Marie No. Marie No. Marie No. Marie No. | rs1076928_C | T/C | -0.12 (↓) | 45% | 2.75 x 10 ⁻¹⁹ | | Marie No. Marie No. Marie No. Marie No. | rs1087056 G | A / A | -0.08 [-] | 63% | 3.50 × 10 ⁻¹⁹ | | Marie Mari | | | | | | | 1900 | | | | | | | 1000000000000000000000000000000000000 | 100 | | | | | | | | rs9878602_T | G / G | 0.10 (-) | | | | | rs1465697_C | C/T | -0.09 (1) | 74% | 3.02 x 10 ⁻¹⁸ | | ### ### ### ### ### ### ### ### ### ## | rs483180_G | C/C | -0.08 (-) | 27% | 1.45 × 10 ⁻¹⁷ | | ### ### #### ######################### | rs1112718_A | A / G | 0.08 (1) | 57% | 2.08 x 10 ⁻¹⁷ | | NA | rs35703946_G | G / G | 0.12 (↑) | 88% | 2.83 x 10 ⁻¹⁷ | | MECONSTONE | rs12434551_A | A/T | 0.08 (1) | 55% | 4.14 × 10 ⁻¹⁷ | | March Marc | rs34026809_C | NA | -0.09 (-) | 4% | 7.68 x 10 ⁻¹⁷ | | ###################################### | rs62013236_C | C/C | 0.10 (↑) | 87% | 8.53 x 10 ⁻¹⁷ | | ### 17 | rs9909593_A | A / G | -0.08 (↓) | 62% | 8.57 x 10 ⁻¹⁷ | | MAY | | | -0.11 [↓] | 62% | 8.91 x 10 ⁻¹⁷ | | ratS227021_O 0 / T -0.08 (4) 665 155 x 10 ° 8 rat2153763_C 0 / 0 0.12 (2) 845 1.07 x 10 ° 8 rat2053763_C 0 / 0 -0.53 (4) 315 1.57 x 10 ° 8 rat2053763_C 6 / T 0.00 (1) 745 3.01 x 10 ° 8 rat20526_G 6 / T 0.00 (1) 534 3.25 x 10 ° 8 rat20526_G 6 / T 0.00 (1) 635 6.08 x 10 ° 8 rat20526_G 6 / A 0.08 (1) 705 6.03 x 10 ° 8 rat20526_G 6 / A 0.00 (-) 654 7.03 x 10 ° 8 rat20526_G 6 / A 0.00 (-) 654 7.03 x 10 ° 8 rat20526_G 6 / A 0.00 (-) 654 1.53 x 10 ° 8 rat20526_G 6 / A 0.00 (-) 654 1.53 x 10 ° 8 rat20526_G 6 / A 0.05 (-) 805 1.43 x 10 ° 8 rat20626_G 6 / A 0.13 (-) 405 (-) 405 (-) rat20626_G 6 / A 0.04 (-) 7.75 | | | | | | | rs/25/35/5_0 0 / 0 0.42 (1) 84% 1.67 × 10 ° 0 rs/00083_0 0 / 6 -0.45 (4) 31% 1.67 × 10 ° 0 rs/05082_0 0 / 1 0.09 (1) 74% 8.01 × 10 ° 0 rs/257723_1 0 / 1 0.08 (1) 55% 3.26 × 10 ° 0 rs/25272_1 0 / 1 0.08 (1) 75% 6.00 × 10 ° 0 rs/2522_2 0 / 0 0.09 (-) 64% 7.03 × 10 ° 0 rs/2522_2 0 / 0 0.09 (-) 64% 7.03 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 60% 1.13 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 60% 1.41 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 60% 1.41 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 60% 1.13 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 60% 1.14 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 20% 1.20 × 10 ° 0 rs/252_2 0 / 0 0.09 (-) 20% 1.20 × 10 ° 0 | | | | | | | rationas_6 0 / 6 -0.13 (L) 31% 1.87 × 10 % ref1863028_0 0 / T 0.09 (t) 74% 3.01 × 10 % re33723_10 0 / T 0.08 (t) 63% 3.26 × 10 % re12622870_T 0 / T 0.09 (t) 63% 3.26 × 10 % re12622870_T 0 / G 0.09 (t) 70% 6.10 × 10 % re653082_A 0 / G 0.00 (-) 64% 7.03 × 10 % re4766224_A 0 / G 0.00 (-) 60% 1.43 × 10 % re47262270_G 0 / G 0.45 (t) 80% 1.44 × 10 % re12222660_C 0 / A 0.45 (t) 80% 1.76 × 10 % re12222660_C 0 / A 0.45 (t) 80% 1.76 × 10 % re12222660_C 0 / A 0.45 (t) 80% 1.76 × 10 % re12222660_C 0 / A 0.45 (t) 80% 1.76 × 10 % re12222660_C 0 / A 0.45 (t) 80% 1.28 × 10 % re12222660_C 0 / A 0.45 (t) 30% 1.28 | | | | | | | ### ################################## | | | | | | | re2377231_6 6 / T 0.08 (1) 63% 3.26 x 10^10 re12622670_T C / T 0.09 (1) 63% 6.08 x 10^10 re8633082_A G / A 0.08 (1) 79% 6.10 x 10^10 re8633082_A G / G 0.09 (-) 64% 7.03 x 10^10 re4706227_G G / G 0.00 (-) 60% 1.13 x 10^10 re1272226_G G / G 0.45 (1) 80% 1.47 x 10^10 re1272265_G G / A 0.13 (1) 80% 1.76 x 10^10 re1272265_G G / A 0.13 (1) 80% 1.76 x 10^10 re1272265_G G / A 0.13 (1) 80% 1.78 x 10^10 re1272265_G G / A 0.13 (1) 80% 1.28 x 10^10 re1272265_G G / A 0.15 (-) 26% 1.82 x 10^10 re1272265_G G / A 0.00 (1) 31% 2.31 x 10^10 re1282726_G G / A 0.00 (1) 77% 3.05 x 10^10 re1282727_G G / A 0.00 (1) 77% <td< td=""><td>rs10093_G</td><td></td><td></td><td></td><td></td></td<> | rs10093_G | | | | | | ref2622570_T O / T 0.00 (t) 65% 6.08 × 10 - 16 re883484_G G / A 0.08 (t) 70% 6.10 × 10 - 16 re8633062_A G / G 0.09 (-) 64% 7.03 × 10 - 16 re4796224_A G / G 0.00 (-) 60% 1.13 × 10 - 16 re72622276_G G / G 0.74 0.15 (t) 80% 1.47 × 10 - 16 re12722656_G G / A 0.13 (t) 80% 1.76 × 10 - 16 re12722656_G G / A 0.15 (t) 80% 1.76 × 10 - 16 re1272266_G G / A 0.15 (t) 80% 1.76 × 10 - 16 re27326_G G / G -0.00 (4) 40% 1.82 × 10 - 16 re180133_A G / G -0.00 (4) 37% 2.31 × 10 - 16 re40534_G G / T -0.10 (4) 77% 3.06 × 10 - 16 re180133_A G / G -0.10 (4) 77% 3.06 × 10 - 16 re40534_G G / T -0.00 (4) 86% 1.37 × 10 - 14 re8053410_T T / T <td< td=""><td>rs61863928_G</td><td>G/T</td><td>0.09 (↑)</td><td>74%</td><td></td></td<> | rs61863928_G | G/T | 0.09 (↑) | 74% | | | reg85494_6 9 / A 0.08 (t) 79% 6.00 x 10 -80 re6533082_A 0 / 9 0.09 (-) 64% 7.03 x 10 -80 re4796224_A 0 / 9 -0.09 (-) 60% 1.13 x 10 -80
rs72922276_G 0 / 9 0.45 (t) 89% 1.41 x 10 -80 rs12722569_C 0 / A 0.45 (t) 89% 1.47 x 10 -80 rs3355024_C 1 / T 0.46 (-) 26% 1.82 x 10 -80 rs127245_G 0 / G -0.00 (4) 40% 1.98 x 10 -80 rs180133_A 0 / A -0.10 (4) 31% 2.21 x 10 -80 rs406534_G 0 / T -0.10 (4) 77% 3.06 x 10 -80 rs773182_G A / A 0.09 (-) 71% 3.89 x 10 -80 rs8639410_T T / T -0.12 (4) 86% 1.37 x 10 -44 rs86408_A A / A 0.11 (1) 76% 2.98 x 10 -44 rs86408_A A / A 0.11 (1) 76% 2.98 x 10 -44 rs86408_A A / A 0.11 (1) 77% | rs2317231_G | G/T | 0.08 (1) | 53% | 3.25 x 10 ⁻¹⁶ | | re6533062_A 9 / 9 0.09 (-) 64% 7.03 × 10 · 6 rs4706224_A 9 / 9 -0.09 (-) 60% 1.13 × 10 · 6 rs72822276_G 9 / 9 -0.06 (-) 60% 1.44 × 10 · 6 rs12722669_C C / A 0.13 (f) 89% 1.76 × 10 · 6 rs3135024_C T / T 0.15 (-) 26% 1.82 × 10 · 6 rs12147246_G 9 / 6 -0.09 (4) 49% 1.98 × 10 · 6 rs180133_A 9 / 6 -0.00 (4) 31% 2.23 × 10 · 6 rs7731662_G A / A -0.01 (4) 77% 3.06 × 10 · 6 rs863440_T T / T -0.42 (4) 86% 1.37 × 10 · 4 rs863440_T T / T -0.07 (4) 74% 2.76 × 10 · 4 rs86486_A A / A 0.11 (f) 76% 2.98 × 10 · 4 rs86486_A A / A 0.11 (f) 76% 2.90 × 10 · 4 rs8775798_A A / A 0.07 (f) 44% 4.12 × 10 · 4 rs883871_G 9 / 6 -0.12 (4) 80% </td <td>rs12622670_T</td> <td>C/T</td> <td>0.09 (1)</td> <td>53%</td> <td>5.08 x 10⁻¹⁶</td> | rs12622670_T | C/T | 0.09 (1) | 53% | 5.08 x 10 ⁻¹⁶ | | re4706224_A 6 / 6 -0.00 (-) 60% 1.13 x 10 *6 rs72922276_6 6 / 6 0.46 (r) 80% 1.44 x 10 *6 rs12722656_0 0 / A 0.43 (r) 80% 1.76 x 10 *6 rs3136024_0 7 / T 0.46 (-) 25% 1.82 x 10 *6 rs12147246_6 0 / G -0.00 (4) 49% 1.98 x 10 *6 rs406343_6 0 / A -0.40 (4) 31% 2.31 x 10 *8 rs406343_6 0 / T -0.40 (4) 77% 3.06 x 10 *6 rs7731026_6 A / A 0.09 (-) 71% 3.89 x 10 *6 rs6839410_T T / T -0.07 (4) 86% 1.37 x 10 *4 rs884466_A A / A 0.01 (f) 76% 2.98 x 10 *4 rs1049079_C C / G -0.33 (4) 92% 2.99 x 10 *4 rs6742_C T / C 0.44 (f) 77% 4.11 x 10 *4 rs77788_A A / A 0.07 (f) 44% 4.12 x 10 *4 rs838371_G 9 / G -0.02 (4) 90% <td< td=""><td>rs983494_G</td><td>G / A</td><td>0.08 (1)</td><td>79%</td><td>6.10 × 10⁻¹⁶</td></td<> | rs983494_G | G / A | 0.08 (1) | 79% | 6.10 × 10 ⁻¹⁶ | | rs72922276_0 6 / 6 0.16 (t) 88% 1.41 x 10 ° 6 rs12722656_0 C / A 0.43 (t) 88% 1.76 x 10 ° 6 rs3135024_0 T / T 0.46 (-) 26% 1.82 x 10 ° 6 rs12147246_6 6 / 6 -0.00 (4) 49% 1.98 x 10 ° 6 rs1801133_A 6 / A -0.10 (4) 31% 2.31 x 10 ° 6 rs406543_6 6 / T -0.10 (4) 77% 3.05 x 10 ° 6 rs7731626_6 A / A 0.09 (-) 71% 3.89 x 10 ° 6 rs68394161_T T / T -0.42 (4) 85% 1.37 x 10 ° 4 rs8863496_T T / T -0.07 (4) 74% 2.75 x 10 ° 4 rs44666_A A / A 0.11 (1) 76% 2.96 x 10 ° 4 rs6742_O C / G -0.13 (4) 92% 2.99 x 10 ° 4 rs6742_O T / C 0.44 (1) 77% 4.11 x 10 ° 4 rs77798_A A / A 0.07 (1) 44% 4.12 x 10 ° 4 rs8737708_A A / A 0.07 (1) 44% | rs6533052_A | G/G | 0.09 (-) | 54% | 7.03 x 10 ⁻¹⁶ | | rs12722569_C C / A 0.43 (1) 89% 1.76 x 10 ° 6 rs3735024_C T / T 0.45 (-) 25% 1.82 x 10 ° 6 rs12447246_G G / G -0.00 (4) 40% 1.98 x 10 ° 6 rs1801133_A G / A -0.10 (4) 31% 2.21 x 10 ° 6 rs405343_G G / T -0.10 (4) 77% 3.05 x 10 ° 6 rs773162_G A / A 0.09 (-) 71% 3.89 x 10 ° 6 rs6839416_T T / T -0.12 (4) 85% 1.37 x 10 ° 14 rs244666_A A / A 0.11 (1) 76% 2.96 x 10 ° 14 rs1049079_C C / G -0.13 (4) 92% 2.99 x 10 ° 14 rs6742_C T / C 0.04 (1) 77% 4.11 x 10 ° 14 rs67742_C T / C 0.04 (1) 77% 4.11 x 10 ° 14 rs67742_C T / C 0.04 (1) 77% 4.11 x 10 ° 14 rs67742_G T / T 0.13 (1) 92% 0.07 * 10 ° 14 rs67742_G T / T 0.13 (1) 92% | rs4796224_A | G/G | -0.09 (-) | 50% | 1.13 × 10 ⁻¹⁵ | | ra3735024_C T/T 0.16 (-) 25% 1.82 x 10 ⁻¹⁶ rs12147246_G 6 / 6 -0.00 (4) 49% 1.98 x 10 ⁻¹⁶ rs1801133_A 6 / A -0.10 (4) 31% 2.31 x 10 ⁻¹⁶ rs405343_G 6 / T -0.10 (4) 77% 3.05 x 10 ⁻¹⁶ rs773162_G A / A 0.09 (-) 71% 3.89 x 10 ⁻¹⁶ rs5839416_T T / T -0.12 (4) 85% 1.37 x 10 ⁻¹⁴ rs244656_A A / A 0.11 (1) 76% 2.96 x 10 ⁻¹⁴ rs104907_G O / G -0.13 (4) 92% 2.99 x 10 ⁻¹⁴ rs656485_T O / T -0.08 (4) 66% 3.70 x 10 ⁻¹⁴ rs6772_G T / C 0.14 (1) 77% 4.11 x 10 ⁻¹⁴ rs6742_C T / C 0.14 (1) 77% 4.71 x 10 ⁻¹⁴ rs67724508_T T / T 0.13 (1) 92% 6.07 x 10 ⁻¹⁴ rs83871_C 6 / G -0.12 (1) 80% 8.56 x 10 ⁻¹⁴ rs8308424_A 6 / G -0.09 (-) | rs72922276_G | G / G | 0.15 (↑) | 89% | 1.41 × 10 ⁻¹⁵ | | rs3156034_C T/T 0.16 (-) 25% 1.82 x 10 ⁻¹⁶ rs12147246_G 0 / 6 -0.09 (4) 49% 1.98 x 10 ⁻¹⁶ rs1801133_A 0 / A -0.10 (4) 31% 2.31 x 10 ⁻¹⁶ rs405343_G 0 / T -0.10 (4) 77% 3.06 x 10 ⁻¹⁶ rs7731826_G A / A 0.09 (-) 71% 3.89 x 10 ⁻¹⁶ rs68304161_T T / T -0.12 (4) 85% 1.37 x 10 ⁻¹⁴ rs6830461_T T / T -0.07 (4) 74% 2.75 x 10 ⁻¹⁴ rs244056_A A / A 0.11 (1) 76% 2.96 x 10 ⁻¹⁴ rs1049079_C O / G -0.13 (4) 92% 2.99 x 10 ⁻¹⁴ rs654468_T O / T -0.08 (4) 66% 3.70 x 10 ⁻¹⁴ rs6742_C T / C 0.14 (1) 77% 4.11 x 10 ⁻¹⁴ rs877788_A A / A 0.07 (1) 4.4% 4.12 x 10 ⁻¹⁴ rs83871_C 0 / G -0.12 (4) 80% 8.56 x 10 ⁻¹⁴ rs8308424_A 0 / G -0.09 (-) | rs12722559_C | C/A | 0.13 (1) | 89% | 1.76 × 10 ⁻¹⁵ | | re12147246_6 6 / 6 -0.09 (↓) 49% 1,98 x 10^{-16} re1801133_A 6 / A -0.10 (↓) 31% 2,31 x 10^{-16} re405343_G 6 / T -0.40 (↓) 77% 3,05 x 10^{-16} re57373626_G A / A 0.09 (-) 71% 3,89 x 10^{-16} re58394461_T T / T -0.12 (↓) 86% 1,37 x 10^{-14} re9863496_T T / T -0.07 (↓) 74% 2,75 x 10^{-14} re244656_A A / A 0.11 (1) 76% 2,98 x 10^{-14} re5049079_C C / G -0.13 (↓) 92% 2,99 x 10^{-14} re5646881_T C / T -0.08 (↓) 66% 3,70 x 10^{-14} re5737798_A A / A 0.07 (1) 44% 4,12 x 10^{-14} re838871_G 6 / G -0.12 (↓) 80% 8,56 x 10^{-14} re9308424_A 6 / G -0.09 (-) 38% 9,25 x 10^{-14} re5269434_T T / C -0.09 (↓) 57% 1,47 x 10^{-15} | | Т/Т | | 25% | 1.82 × 10 ⁻¹⁵ | | rs/80/11/35_A 6 / A -0.10 (¼) 31% 2.31 x 10 · 16 rs/40/5343_G 6 / T -0.10 (¼) 77% 3.05 x 10 · 16 rs/77/3162_G A / A 0.09 (-) 71% 3.89 x 10 · 16 rs/58/394161_T T / T -0.12 (¼) 85% 1.37 x 10 · 14 rs/98/3962_T T / T -0.07 (¼) 74% 2.75 x 10 · 14 rs/98/3962_T T / T -0.07 (¼) 76% 2.96 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/49079_G C / G -0.13 (¼) 92% 2.99 x 10 · 14 rs/10/4907_G T / C 0.14 (1) 77% 4.11 x 10 · 14 rs/10/4907_G T / C | | | | | | | rs405343_G 6 / T -0.10 (↓) 77% 3.05 x 10.16 rs7731626_G A / A 0.09 (-) 71% 3.89 x 10.16 rs58394161_T T / T -0.12 (↓) 86% 1.37 x 10.14 rs9863496_T T / T -0.07 (↓) 74% 2.75 x 10.14 rs244656_A A / A 0.11 (↑) 76% 2.96 x 10.14 rs1049079_C C / G -0.13 (↓) 92% 2.99 x 10.14 rs6664881_T C / T -0.08 (↓) 66% 3.70 x 10.14 rs6742_C T / C 0.14 (↑) 77% 4.11 x 10.14 rs3737798_A A / A 0.07 (↑) 44% 4.12 x 10.14 rs17724508_T T / T 0.13 (↑) 92% 6.07 x 10.14 rs838871_G G / G -0.12 (↓) 80% 8.56 x 10.14 rs9308424_A G / G -0.09 (-) 38% 9.25 x 10.14 rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10.18 | | | | | | | rs7731626_G A / A 0.09 (-) 71% 3.89 x 10 ⁻¹⁶ rs683394161_T T / T -0.12 (4) 85% 1.37 x 10 ⁻¹⁴ rs9863496_T T / T -0.07 (4) 74% 2.76 x 10 ⁻¹⁴ rs244666_A A / A 0.11 (1) 76% 2.96 x 10 ⁻¹⁴ rs1049079_C C / G -0.13 (4) 92% 2.99 x 10 ⁻¹⁴ rs6664881_T C / T -0.08 (4) 66% 3.70 x 10 ⁻¹⁴ rs6742_C T / C 0.14 (1) 77% 4.11 x 10 ⁻¹⁴ rs3737798_A A / A 0.07 (1) 44% 4.12 x 10 ⁻¹⁴ rs17724508_T T / T 0.13 (1) 92% 6.07 x 10 ⁻¹⁴ rs883871_G G / G -0.12 (4) 80% 8.56 x 10 ⁻¹⁴ rs9308424_A G / G -0.09 (-) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T T / C -0.09 (4) 57% 1.47 x 10 ⁻¹⁵ | | | | | | | rs58394161_T T/T -0.12 (\$\psi\$) 85% 1.37 x 10^-14 rs9863496_T T/T -0.07 (\$\psi\$) 74% 2.76 x 10^-14 rs244656_A A / A 0.11 (\$\psi\$) 76% 2.96 x 10^-14 rs1049079_C C / G -0.13 (\$\psi\$) 92% 2.99 x 10^-14 rs664681_T C / T -0.08 (\$\psi\$) 66% 3.70 x 10^-14 rs6742_C T / C 0.14 (\$\psi\$) 77% 4.11 x 10^-14 rs3737798_A A / A 0.07 (\$\psi\$) 44% 4.12 x 10^-14 rs17724508_T T / T 0.13 (\$\psi\$) 92% 6.07 x 10^-14 rs83871_G 9 / G -0.12 (\$\psi\$) 80% 8.56 x 10^-14 rs9308424_A 9 / G -0.09 (-) 38% 9.25 x 10^-14 rs2269434_T T / C -0.09 (\$\psi\$) 57% 1.47 x 10^-15 | | | | | | | rs9863496_T | | | | | | | rs244656_A A / A 0.11 (↑) 76% 2.96 x 10 ⁻¹⁴ rs1049079_C C / G -0.13 (↓) 92% 2.99 x 10 ⁻¹⁴ rs6564681_T c / T -0.08 (↓) 66% 3.70 x 10 ⁻¹⁴ rs6742_C T / C 0.14 (↑) 77% 4.11 x 10 ⁻¹⁴ rs3737798_A A / A 0.07 (↑) 44% 4.12 x 10 ⁻¹⁴ rs17724508_T T / T 0.13 (↑) 92% 6.07 x 10 ⁻¹⁴ rs883871_G G / G -0.12 (↓) 80% 8.56 x 10 ⁻¹⁴ rs9308424_A 6 / G -0.09 (→) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T | | | | | | | rs1049079_C C C 6 -0.13 (↓) 92% 2.99 x 10 ·14 rs6564681_T C C /T -0.08 (↓) 66% 3.70 x 10 ·14 rs6742_C T /C 0.14 (↑) 77% 4.11 x 10 ·14 rs7373798_A A /A 0.07 (↑) 44% 4.12 x 10 ·14 rs7724508_T T /T 0.13 (↑) 92% 6.07 x 10 ·14 rs883871_G 6 /6 -0.12 (↓) 80% 8.56 x 10 ·14 rs2869434_T T/C 1.09 (↓) 57% 1.47 x 10 ·15 rs2869434_T T/C -0.09 (↓) 57% 1.47 x 10 ·15 rs2869434_T rs | rs9863496_T | | -0.07 (↓) | 74% | | | rs6564681_T C / T -0.08 (↓) 66% 3.70 x 10 · 14 rs6742_C T / C 0.14 (↑) 77% 4.11 x 10 · 14 rs3737788_A A / A 0.07 (↑) 44% 4.12 x 10 · 14 rs17724508_T T / T 0.13 (↑) 92% 6.07 x 10 · 14 rs83871_G 6 / 6 -0.12 (↓) 80% 8.56 x 10 · 14 rs9308424_A 6 / 6 -0.09 (-) 38% 9.25 x 10 · 14 rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 · 15 | rs244656_A | A / A | 0.11 (1) | 76% | | | rs6742_C T/C 0.14 (↑) 77% 4.11 x 10-14 rs3737798_A A/A 0.07 (↑) 44% 4.12 x 10-14 rs17724508_T T/T 0.13 (↑) 92% 6.07 x 10-14 rs883871_G 6/6 -0.12 (↓) 80% 8.56 x 10-14 rs9308424_A 6/6 -0.09 (−) 38% 9.25 x 10-14 rs2269434_T T/C -0.09 (↓) 57% 1.47 x 10-15 | rs1049079_C | C / G | -0.13 (↓) | 92% | 2.99 x 10 ⁻¹⁴ | | rs3737798_A A / A 0.07 (↑) 44% 4.12 x 10 ⁻¹⁴ rs17724508_T T / T 0.13 (↑) 92% 6.07 x 10 ⁻¹⁴ rs883871_G G / G -0.12 (↓) 80% 8.56 x 10 ⁻¹⁴ rs9308424_A G / G -0.09 (-) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 ⁻¹⁵ | rs6564681_T | C/T | -0.08 (↓) | 66% | 3.70 x 10 ⁻¹⁴ | | rs17724508_T T / T 0.13 (1) 92% 6.07 x 10 ⁻¹⁴ rs83871_G G / G -0.12 (↓) 80% 8.56 x 10 ⁻¹⁴ rs9308424_A G / G -0.09 (-) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 ⁻¹⁵ | rs6742_C | T/C | 0.14 (1) | 77% | 4.11 × 10 ⁻¹⁴ | | rs17724508_T T / T 0.13 (↑) 92% 6.07 x 10 ⁻¹⁴ rs83871_G G / G -0.12 (↓) 80% 8.56 x 10 ⁻¹⁴ rs9308424_A G / G -0.09 (−) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 ⁻¹⁵
| rs3737798_A | A / A | 0.07 (↑) | 44% | 4.12 × 10 ⁻¹⁴ | | rs883871_G | rs17724508_T | | | 92% | 6.07 × 10 ⁻¹⁴ | | rs9308424_A 6 / 6 -0.09 (-) 38% 9.25 x 10 ⁻¹⁴ rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 ⁻¹³ | | | | | | | rs2269434_T T / C -0.09 (↓) 57% 1.47 x 10 ⁻¹⁵ | | | | | | | | | | | | | | rs719316_T C / T 0.07 (1) 50% 1.62 x 10 ⁻¹³ | | C/T | -0.09 (↓)
0.07 (↑) | 50% | 1.47 × 10 ⁻¹² | | control of the th | | | | | | |--|---------------|-------|-----------|-------|---| | Section 1 | rs2084007_C | C/T | 0.08 (1) | 55% | 1.91 × 10 ⁻¹³ | | Mathematical Math | rs6738544_C | A / C | 0.07 (↑) | 62% | 2.40 × 10 ⁻¹³ | | 1995 | rs7975763_C | C/C | -0.08 (↓) | 78% | 2.99 x 10 ⁻¹³ | | March Marc | rs34695601_T | T/T | 0.08 (↑) | 83% | 5.56 x 10 ⁻¹³ | | Control Cont | | | | 66% | 5.66 × 10 ⁻¹³ | | Marche M | | | | | | | MARCESTRA A C | | | | | | | MARCHARD A A A A A A A A A | | | | | | | Personal | | | | | | | Page | | | | | | | | rs4262739_A | | | | | | Personant | rs2289746_C | T/C | 0.08 (1) | 63% | | | March Marc | rs17780048_C | C/C | 0.10 (↑) | 96% | 5.15 x 10 ⁻¹² | | Martine Mart | rs12614091_A | A / A | 0.07 (1) | 75% | 6.18 x 10 ⁻¹² | | 1000000000000000000000000000000000000 | rs766848979_A | NA | -0.17 (-) | < 1% | 6.35 x 10 ⁻¹² | | PERSONAL TO COST | rs4409785_T | T/T | -0.08 (↓) | 87% | 6.87 x 10 ⁻¹² | | | rs57116599_A | G / A | -0.09 (↓) | 24% | 1.11 × 10 ⁻¹¹ | | Marie Mari | rs11231749_C | T/C | 0.07 (↑) | 23% | 1.12 × 10 ⁻¹¹ | | 1000000000000000000000000000000000000 | rs2705616_G | C / G | -0.07 (↓) | 40% | 1.15 x 10 ⁻¹¹ | | | rs10245867_G | G/T | -0.07 (↓) | 62% | 1.22 × 10 ⁻¹¹ | | NORMONDOL T | | | | | 1.34 × 10 ⁻¹¹ | | Marche M | | | | | | | 1 | | | | | | | 100 | | | | | | | INTERMENT O T / C O O O O O O O O O O O O O O O O O O | | | | | | | 1.00 | | | | | | | 183184004_T | | | | | | | 1-10065054_6 A A A A -0.09 [-] Shi A 4.68 × 10.78 | rs2726479_T | | -0.07 (-) | 49% | | | 10 10 10 10 10 10 10 10 | rs3184504_T | T/C | 0.06 (1) | 33% | | | Part | rs9955954_G | A / A | -0.09 (-) | 24% | | | TYT | rs760517_C | C/C | 0.07 (1) | 59% | 5.22 x 10 ⁻¹¹ | | MARCON M | rs5756405_A | A / G | 0.06 (1) | 56% | 5.35 x 10 ⁻¹¹ | | 1 | rs1399180_T | T/T | -0.10 (↓) | 25% | 7.16 x 10 ⁻¹¹ | | ret/40038H_G NA -0.20 (-) 2% 8.98 × 10 °° re/80828L_T T/T 0.07 (t) 07% 1.23 × 10 °° re/8018L_A A /A 0.01 (1) 0.0% 1.31 × 10 °° re/7076R37L_C 0 /O -0.08 (3) 77% 1.41 × 10 °° re/7076R37L_C 0 /O -0.08 (3) 77% 1.41 × 10 °° re/7076R37L_C 0 /O -0.00 (1) 80% 2.62 × 10 °° re/7076R37L_C 0 /O -0.00 (4) 80% 2.62 × 10 °° re/7076R37L_C 1 /T -0.08 (3) 75% 3.33 × 10 °° re/7076R37L_C 7 /O -0.08 (3) 67% 3.33 × 10 °° re/7076R37L_C 7 /O -0.08 (3) 65% 3.58 × 10 °° re/7076R37L_C 7 /O -0.08 (3) 65% 3.58 × 10 °° re/7076R37L_C 7 /O -0.08 (3) 65% 3.58 × 10 °° re/7076R37L_C 7 /O -0.08 (3) 65% 4.33 × 10 °° re/7076R37L_C 0 /O -0.06 (1) -0.0 | rs9277626_G | A / G | -0.09 (↓) | 30% | 7.16 x 10 ⁻¹¹ | | m7686891_T T / T 0.07 (1) 074 128 x 10 ° 0 ns8001131_A A / A -0.01 (1) 00% 1.33 x 10 ° 0 ns700582_C 0 / C -0.08 (4) 77% 1.41 x 10 ° 0 ns7222400_A 0 / A 0.06 (1) 43% 2.00 x 10 ° 0 ns222403_A 0 / G -0.01 (1) 80% 2.82 x 10 ° 0 ns222400_A 0 / G -0.08 (4) 87% 3.05 x 10 ° 0 ns222400_A 0 / C -0.08 (4) 87% 3.05 x 10 ° 0 ns222200_C NA 0.06 (-) 45% 3.49 x 10 ° 0 ns222200_C NA 0.06 (-) 45% 3.49 x 10 ° 0 ns1019150_T T / C 0.08 (4) 87% 3.49 x 10 ° 0 ns10223_T 0 / C 0.08 (1) 82% 3.90 x 10 ° 0 ns1110580_T 1 / C 0.06 (1) 9.90% 4.43 x 10 ° 0 ns1110580_T 0 / C 0.06 (1) 9.90% 4.43 x 10 ° 0 ns1110580_T 0 / C 0.06 (1) 9.90% | rs10230723_A | A / A | 0.08 (1) | 85% | 7.69 x 10 ⁻¹¹ | | REGINIST_A | rs17493811_G | NA | -0.20 (-) | 2% | 8.98 x 10 ⁻¹¹ | | rest7061521_0 0_7C .0.08 (4) 77% .141 x 10^10 rs7222460_A 6_7A 0.06 (1) 43% 2.09 x 10^10 rs2828458_G 6_76 -0.00 (4) 89% 2.02 x 10^10 re1008164_T 7_7T -0.08 (4) 75% 3.06 x 10^10 rs282844_T 7_7C -0.08 (4) 87% 3.15 x 10^10 rs282822A C_7C 0.09 (-) 20% 3.19 x 10^10 rs222002_C MA 0.06 (-) 4% 3.65 x 10^10 rs4040730_A 6_7C 0.08 (1) 66% 3.65 x 10^10 rs4040730_A 6_7C 0.06 (-) 62% 3.00 x 10^10 rs4040730_A 6_7C 0.07 (-) 60% 3.65 x 10^10 rs4040730_A 6_7C 0.07 (-) 60% 4.55 x 10^10 rs4040730_A 6_7C 0.07 (-) 60% 6.65 x 10^10 rs4040730_A 0_7C 0.07 (-) 60% 6.65 x 10^10 rs4040730_A 0_7C 0.07 (-) 60% 6.65 x 10^10 <td>rs7855251_T</td> <td>T/T</td> <td>0.07 (1)</td> <td>67%</td> <td>1.23 x 10⁻¹⁰</td> | rs7855251_T | T/T | 0.07 (1) | 67% | 1.23 x 10 ⁻¹⁰ | | rest/Doilitist_1.0 0,00 .0.08 (4) .77% 1.41 x 10 *** res/Ze2450_A 0,7A 0.08 (1) 43% 2.09 x 10 *** res/Ze2450_A 0,7A 0.00 (4) 89% 2.62 x 10 *** res/Ze2450_A 0,7A 0.00 (4) 75% 3.05 x 10 *** res/Ze2450_A 7,7C 0.08 (4) 87% 3.55 x 10 *** res/Ze240_A 0,7C 0.00 (-) 20 3.00 x 10 *** res/Ze200_C NA 0.06 (-) 4% 3.65 x 10 *** res/Ze200_C NA 0.06 (-) 66% 3.65 x 10 *** res/Ze200_C NA 0.06 (-) 62% 3.65 x 10 *** res/Ze200_C NA 0.06 (-) 62% 3.65 x 10 *** res/Ze200_C NA 0.06 (-) 62% 3.65 x 10 *** res/Ze200_C O,7 0.06 (-) 62% 3.65 x 10 *** res/Ze200_C O,7 0.07 (-) 69% 6.45 x 10 *** res/Ze200_C O,7 0.07 (-) 69% 6.6 | rs6911131_A | A / A | -0.11 (↓) | 90% | 1.31 × 10 ⁻¹⁰ | | re7222660,A 6 / A 0.08 (f) 43% 2.00 × 10 * 10 re2828438_6 0 / 9 -0.10 (4) 89% 2.00 × 10 * 10 re10661164_T T / T -0.08 (4) 75% 3.05 × 10 * 10 re2828447_T T / C -0.08 (4) 87% 3.13 × 10 * 10 re384928_A 0 / C 0.09 (-) 20%
3.18 × 10 * 10 re20200_C NA 0.16 (-) 4% 3.66 × 10 * 10 re10191800_T T / C 0.08 (1) 66% 3.85 × 10 * 10 re10283217_C 0 / C 0.06 (-) 66% 3.00 × 10 * 10 re102833_T 0 / C 0.05 (1) > 99% 4.13 × 10 * 10 re10283_T 0 / C 0.07 (-) 60% 6.34 × 10 * 10 re10283_T 0 / C 0.02 (1) 91% 6.34 × 10 * 10 re10280_A A / G 0.00 (1) 82% 6.90 × 10 * 10 re10380_A A / G 0.06 (1) 70% 7.90 × 10 * 10 re3540_A 0 / A 0.06 (1) 70% <td></td> <td></td> <td></td> <td>77%</td> <td>1.41 × 10⁻¹⁰</td> | | | | 77% | 1.41 × 10 ⁻¹⁰ | | massacase 6 / 6 -0.10 (4) 88% 2.62 × 10 **0 rs10661164_T T / T -0.08 (4) 76% 3.05 × 10 **0 rs288644T_T T / C -0.08 (4) 87% 3.15 × 10 **0 rs288644T_T T / C -0.08 (4) 87% 3.15 × 10 **0 rs282622_A C / C -0.00 (-) 20% 3.45 × 10 **0 rs262020_C NA -0.16 (-) 4% 3.65 × 10 **0 rs10101350_T T / C -0.08 (1) 66% 3.65 × 10 **0 rs4040730_A 6 / 6 -0.06 (-) 52% 3.30 × 10 **0 rs4040730_A 6 / 6 -0.06 (-) 52% 3.50 × 10 **0 rs101830_T C / C -0.06 (-) -0.52% 4.63 × 10 **0 rs1283217_C C / C -0.07 (-) -0.0% 6.54 × 10 **0 rs284424_C C / C -0.02 (1) -0.02 (1) -0.02 (1) -0.02 (1) rs3540420_C C / T -0.02 (1) -0.03 (1) -0.03 (1) -0.03 (1) -0.03 (1) | | | | | | | re1086H84_T T / T -0.08 (4) 76% 3.06 x 10 ¹⁰ re268647_T T / C -0.08 (4) 87% 3.15 x 10 ¹⁰ re3819282_A C / C 0.09 (-) 20% 3.19 x 10 ¹⁰ re3222092_C NA 0.46 (-) 4% 3.45 x 10 ¹⁰ re3109380_T T / C 0.08 (f) 66% 3.85 x 10 ¹⁰ re440730_A 6 / 8 0.06 (-) 62% 3.50 x 10 ¹⁰ re12832171_C C / C 0.06 (f) >90% 4.45 x 10 ¹⁰ re1284241_C C / C 0.07 (-) 66% 5.46 x 10 ¹⁰ re3744241_C C / C 0.02 (f) 91% 6.34 x 10 ¹⁰ re374424_C C / C 0.02 (f) 91% 6.34 x 10 ¹⁰ re374424_C C / C 0.02 (f) 91% 6.70 x 10 ¹⁰ re3194980_A A / B 0.08 (f) 37% 7.79 x 10 ¹⁰ re33460_A A / B 0.08 (f) 76% 1.08 x 10 ¹⁰ re3560_A A / A 0.00 (4) 77%< | | | | | | | m288842T T T / C -0.08 (4) 87% 3.15 x 10 10 m3819202_A C / C 0.09 (-) 20% 3.19 x 10 10 m32819202_C NA 0.16 (-) 4% 3.46 x 10 10 rs10191800_T T / C 0.08 (1) 66% 3.86 x 10 10 rs440730_A 6 / G 0.06 (-) 62% 3.90 x 10 10 rs1118803_T 6 / C 0.06 (-) 62% 3.90 x 10 10 rs1118803_T 7 / C 0.06 (-) 62% 3.90 x 10 10 rs1118803_T 6 / C 0.07 (-) 60% 6.48 x 10 10 rs1118803_T 7 / C 0.07 (-) 60% 6.48 x 10 10 rs1118803_T 0 / C 0.02 (1) 91% 6.54 x 10 10 rs1118803_T 0 / C 0.09 (1) 82% 6.54 x 10 10 rs111919880_A A / G 0.09 (1) 82% 6.00 x 10 10 rs111919880_A A / G 0.00 (1) 70% 7.70 x 10 10 rs111919880_A A / G 0.00 (1) 82% <th< td=""><td></td><td></td><td></td><td></td><td></td></th<> | | | | | | | re389262_A O / C 0.09 (-) 20% 3.19 x 10 10 re3222002_C NA 0.16 (-) 4% 3.45 x 10 10 re310191360_T T / C 0.08 (1) 66% 3.86 x 10 10 re4040730_A 0 / G 0.06 (-) 62% 3.50 x 10 10 re412832171_C 0 / C 0.16 (1) > 99% 4.13 x 10 10 re512832171_C 0 / C 0.07 (-) 60% 6.45 x 10 10 re512832171_C 0 / C 0.07 (-) 60% 6.45 x 10 10 re512832171_C 0 / C 0.02 (1) 91% 6.34 x 10 10 re512832171_C 0 / A 0.09 (1) 82% 6.90 x 10 10 re51414105_C 0 / A 0.09 (1) 82% 6.90 x 10 10 re51414105_C 0 / A 0.09 (1) 82% 6.90 x 10 10 re51414105_C 0 / A 0.00 (1) 37% 7.79 x 10 10 re5141405_C 0 / A 0.00 (1) 37% 7.79 x 10 10 re514405_C 0 / A 0.00 (1) 80% | | | | | | | rs2229082_C NA 0.16 (-) 4% 3.46 x 10 10 rs10191380_T T/C 0.08 (1) 60% 3.56 x 10 10 rs4940730_A 6 / 6 0.06 (-) 52% 3.90 x 10 10 rs12832171_C C/C 0.16 (1) > 99% 4.13 x 10 10 rs7344214_C C/C -0.07 (-) 69% 6.45 x 10 10 rs17341410_C C/A 0.09 (1) 82% 6.90 x 10 10 rs1434140_C C/A 0.09 (1) 82% 6.90 x 10 10 rs1434140_C C/A 0.09 (1) 82% 6.90 x 10 10 rs1434140_C C/A 0.09 (1) 82% 6.90 x 10 10 rs1434140_C C/A 0.09 (1) 37% 7.79 x 10 10 rs1434140_C C/A 0.06 (1) 37% 7.79 x 10 10 rs1434140_C C/T 0.07 (1) 37% 7.79 x 10 10 rs1434140_C C/T 0.06 (1) 7.0% 1.08 x 10 10 rs24340_C C/T 0.06 (1) 7.0% 1.08 x 10 10 | | | | | | | restolation T / C 0.08 (1) 66% 3.66 × 10 ° 0 res4040730_A 6 / 6 0.06 (-) 62% 3.00 × 10 ° 0 rest26832171_C C / C 0.06 (1) > 99% 4.43 × 10 ° 0 res172683217 C / C 0.07 (-) 69% 6.45 × 10 ° 0 res7344424_C C / C 0.42 (1) 91% 6.34 × 10 ° 0 res17344410_C C / A 0.09 (1) 82% 6.90 × 10 ° 0 res1734410_C C / A 0.09 (1) 82% 6.90 × 10 ° 0 res17344110_C C / A 0.09 (1) 82% 6.90 × 10 ° 0 res17410_C C / A 0.09 (1) 82% 6.90 × 10 ° 0 res174110_C C / A 0.00 (1) 66% 7.63 × 10 ° 0 res174110_C C / T 0.07 (1) 37% 7.79 × 10 ° 0 res28023_C C / T 0.06 (1) 76% 1.08 × 10 ° 0 res28023_C T / T 0.06 (1) 77% 1.13 × 10 ° 0 res2806_A A / A 0.09 (1) | | | | | | | re4940730_A 6 / 6 .0.06 (-) 62% 3.90 x 10^-0 re42632171_C C / C .0.16 (r) > 99% .4.13 x 10^-0 re71426803_T C / C .0.07 (-) .60% .6.45 x 10^-0 re7344421_C C / C .0.2 (r) .91% .6.34 x 10^-0 re1344106_C C / A .0.09 (r) .82% .6.90 x 10^-0 re1141880_A A / G .0.06 (r) .66% .7.63 x 10^-0 re134183080_C C / T .0.07 (r) .37% .7.79 x 10^-0 re354303_G G / A .0.08 (r) .76% .7.99 x 10^-0 re802730_T T / T .0.06 (r) .89% .1.13 x 10^-0 re56096240_T T / T .0.01 (4) .89% .1.13 x 10^-0 re6726063_G A / A .0.09 (4) .77% .1.19 x 10^-0 re6726048_A A / C .0.07 (-) .60% .1.21 x 10^-0 re6726048_A A / C .0.00 (r) .20% .1.43 x 10^-0 re6726048_A A / T .0.00 (| | | | | | | rs1283217_C C C C 0.15 (1) > 99% 4.15 x 10 *10 | | | | | | | re11126803_T C / C -0.07 (-) 60% 6.45 x 10 x 10 rs73414214_C C / C 0.12 (1) 91% 6.34 x 10 x 10 rs13414106_C C / A 0.09 (1) 82% 6.90 x 10 x 10 rs141919880_A A / G 0.06 (1) 66% 7.63 x 10 x 10 rs1316820_C C / T 0.07 (1) 37% 7.79 x 10 x 10 rs802730_T T / T 0.06 (1) 76% 1.08 x 10 x 10 rs802730_T T / T -0.00 (4) 89% 1.13 x 10 x 10 x 10 rs80269240_T T / T -0.00 (4) 77% 1.19 x 10 x 10 x 10 x 10 x 10 rs6278663_G A / A -0.00 (4) 75% 1.21 x 10 | | | | | | | rs73414214_C C / C 0.12 (f) 91% 6.34 x 10-10 rs73414214_C C / C 0.12 (f) 91% 6.34 x 10-10 rs13414106_C C / A 0.09 (f) 82% 6.90 x 10-10 rs119880_A A / B 0.06 (f) 66% 7.63 x 10-10 rs13136820_C C / T 0.07 (f) 37% 7.79 x 10-10 rs354033_G 9 / A 0.08 (f) 76% 7.99 x 10-10 rs802730_T T / T 0.06 (f) 76% 1.08 x 10-9 rs66095240_T T / T -0.10 (4) 89% 1.13 x 10-9 rs651012_C T / T -0.07 (-) 60% 1.21 x 10-9 rs6789653_G A / A 0.06 (-) 75% 1.30 x 10-9 rs6427540_C O, C 0.01 (1) 82% 1.48 x 10-9 rs66272420_T A / T -0.06 (4) 56% 1.48 x 10-9 | rs12832171_C | | | > 99% | | | rs13414105_C C / A 0.09 (1) 82% 6.90 x 10 ⁻¹⁰ rs11919880_A A / 6 0.06 (1) 66% 7.63 x 10 ⁻¹⁰ rs13136820_C C / T 0.07 (1) 37% 7.79 x 10 ⁻¹⁰ rs354033_G 6 / A 0.08 (1) 76% 7.99 x 10 ⁻¹⁰ rs802730_T T / T 0.06 (1) 76% 1.08 x 10 ⁻⁹ rs56096240_T T / T -0.10 (4) 89% 1.13 x 10 ⁻⁹ rs1862059_A A / A -0.09 (4) 77% 1.19 x 10 ⁻⁹ rs631612_C T / T -0.07 (-) 50% 1.21 x 10 ⁻⁹ rs6789653_G A / A 0.06 (-) 75% 1.30 x 10 ⁻⁹ rs6427640_C C / C 0.10 (1) 82% 1.48 x 10 ⁻⁹ rs66272420_T A / T -0.06 (4) 55% 1.48 x 10 ⁻⁹ | rs11125803_T | C/C | -0.07 (-) | 69% | | | rs11919880_A | rs73414214_C | C/C | 0.12 (1) | 91% | 6.34 x 10 ⁻¹⁰ | | rsf3136820_C C / T 0.07 (↑) 37% 7.79 x 10 -10 rs354033_G G / A 0.08 (↑) 76% 7.99 x 10 -10 rs802730_T T / T 0.06 (↑) 76% 1.08 x 10 -8 rs66096240_T T / T -0.10 (↓) 89% 1.13 x 10 -9 rs631612_C T / T -0.09 (↓) 77% 1.19 x 10 -9 rs6789653_G A / A 0.06 (-) 56% 1.30 x 10 -9 rs6427640_C C / C 0.07 (↓) 61% 1.43 x 10 -9 rs66272420_T A / T -0.06 (↓) 56% 1.48 x 10 -9 | rs13414105_C | C / A | 0.09 (1) | 82% | 6,90 x 10 ⁻¹⁰ | | rs354033_G 6 / A 0.08 (↑) 76% 7.99 x 10 ¹⁰ rs802730_T T / T 0.06 (↑) 76% 1.08 x 10 ⁻⁹ rs56096240_T T / T -0.10 (↓) 89% 1.13 x 10 ⁻⁹ rs11852059_A A / A -0.09 (↓) 77% 1.19 x 10 ⁻⁹ rs531612_C T / T -0.07 (-) 50% 1.21 x 10 ⁻⁹ rs6789653_G A / A 0.06 (-) 75% 1.30 x 10 ⁻⁹ rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10 ⁻⁹ rs6427540_C C / C 0.10 (↑) 82% 1.48 x 10 ⁻⁹ rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 ⁻⁹ | rs11919880_A | A / G | 0.06 (1) | 66% | 7.63 x 10 ⁻¹⁰ | | rs802730_T T / T 0.06 (1) 76% 1.08 × 10 · 9 rs66096240_T T / T -0.00 (1) 89% 1.13 × 10 · 9 rs11862069_A A / A -0.09 (1) 77% 1.19 × 10 · 9 rs67361612_C T / T -0.07 (-) 50% 1.21 × 10 · 9 rs6789663_G A / A 0.06 (-) 75% 1.30 × 10 · 9 rs7260482_A A / C -0.07 (1) 61% 1.43 × 10 · 9 rs6672420_T A / T -0.06 (1) 56% 1.48 × 10 · 9 | rs13136820_C | C / T | 0.07 (↑) | 37% | 7.79 x 10 ⁻¹⁰ | | rs66096240_T T / T -0.10 (↓) 89% 1.13 x 10 -9 rs11862069_A A / A -0.09 (↓) 77% 1.19 x 10 -9 rs631612_C T / T -0.07 (-) 50% 1.21 x 10 -9 rs6789653_G A / A 0.06 (-) 75% 1.30 x 10 -9 rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10 -9 rs6427540_C C / C 0.10 (†) 82% 1.48 x 10 -9 rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 -9 | rs354033_G | G/A | 0.08 (1) | 76% | 7.99 x 10 ⁻¹⁰ | | rs11852059_A A / A -0.09 (↓) 77% 1.19 x 10 ⁻⁹ rs631612_C T / T -0.07 (-) 50% 1.21 x 10 ⁻⁹ rs6789653_G A / A 0.06 (-) 75% 1.30 x 10 ⁻⁹ rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10 ⁻⁹ rs6427540_C C / C 0.10 (↑) 82% 1.48 x 10 ⁻⁹ rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 ⁻⁹ | rs802730_T | T/T | 0.06 (1) | 76% | 1.08 x 10 ⁻⁹ | | ref1852059_A A / A -0.09 (↓) 77% 1.19 x 10 ⁻⁹ rs531612_C T / T -0.07 (−) 50% 1.21 x 10 ⁻⁹ rs6789653_G A / A 0.06 (−) 75% 1.30 x 10 ⁻⁹ rs7280482_A A / C -0.07 (↓) 61% 1.43 x 10 ⁻⁹ rs6427540_C C / C 0.10 (↑) 82% 1.48 x 10 ⁻⁹ rs6672420_T A / T -0.06 (↓) 56% 1.48 x 10 ⁻⁹ | rs56095240_T | Т/Т | -0.10 (↓) | 89% | 1.13 × 10 ⁻⁹ | | rs631612_C T / T -0.07 (-) 50% 1.21 x 10-9 rs6789653_G A / A 0.06 (-) 75% 1.30 x 10-9 rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10-9 rs6427540_C C / C 0.10 (↑) 82% 1.48 x 10-9 rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10-9 | rs11852059_A | | | 77% | 1.19 × 10 ⁻⁹ | | rs6789653_6 A / A 0.06 (−) 75% 1.30 x 10 -9 rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10 -9 rs6427640_C C / C 0.10 (↑) 82% 1.48 x 10 -9 rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 -9 | | | | | | | rs7260482_A A / C -0.07 (↓) 61% 1.43 x 10 · 9 rs6427540_C C / C 0.10 (↑) 82% 1.48 x 10 · 9 rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 · 9 | | | | | | | rs6427540_C C/C 0.10 (1) 82% 1.48 x 10 ⁻⁹ rs6672420_T A/T -0.06 (↓) 55% 1.48 x 10 ⁻⁹ | | | | | | | rs6672420_T A / T -0.06 (↓) 55% 1.48 x 10 ⁻⁹ | | | | | | | - ' | | | | | | | rs9808763_G A / A 0.08 (-) 18% 1.60 × 10 ⁻⁹ | | | | | 1.48 × 10 ⁻⁹ 1.60 × 10 ⁻⁹ | | rs12588969_C | C/C | -0.07 (↓) | 72% | 1.82 x 10 ⁻⁹ | |--------------|-------|-----------|------|-------------------------| | rs4325907_T | T/T | -0.07 (↓) | 64% | 1.99 x 10 ⁻⁹ | | rs11161550_A | G / A | -0.06 (↓) | 43% |
2.06 x 10 ⁻⁹ | | rs11083862_A | A/T | 0.07 (1) | 53% | 2.44 x 10 ⁻⁹ | | rs6072343_G | G / G | -0.08 (↓) | 50% | 2.69 x 10 ⁻⁹ | | rs10271373_C | A / A | -0.06 (-) | 42% | 3.11 × 10 ⁻⁹ | | rs4728142_G | G / A | -0.06 (↓) | 62% | 3.37 x 10 ⁻⁹ | | rs2286974_G | A / A | -0.10 (-) | 50% | 4.09 × 10 ⁻⁹ | | rs8062446_T | C/T | 0.08 (1) | 39% | 4.30 × 10 ⁻⁹ | | rs2590438_T | T / G | -0.07 (↓) | 99% | 4.65 × 10 ⁻⁹ | | rs9568402_A | A / A | -0.09 (↓) | 85% | 4.80 × 10 ⁻⁹ | | rs12609500_C | C/C | 0.06 (1) | 82% | 5.27 × 10 ⁻⁹ | | rs72989863_G | G / G | 0.06 (1) | 72% | 5.55 × 10 ⁻⁹ | | rs12971909_G | G / G | -0.07 (↓) | 61% | 5.56 x 10 ⁻⁹ | | rs4812772_C | T/C | 0.07 (1) | 69% | 6.17 × 10 ⁻⁹ | | rs61884005_C | C/C | 0.09 (1) | 84% | 6.34 × 10 ⁻⁹ | | rs962052_C | C/T | 0.06 (1) | 32% | 8.28 x 10 ⁻⁹ | | rs137955_T | T/T | 0.06 (1) | 34% | 9.63 x 10 ⁻⁹ | | rs4820955_A | T / A | 0.06 (1) | 46% | 1.06 x 10 ⁻⁸ | | rs35218683_C | C/T | -0.08 (↓) | 72% | 1.36 x 10 ⁻⁸ | | rs13066789_C | T/T | 0.06 (-) | 49% | 1.50 × 10 ⁻⁸ | | rs11899404_T | T/T | -0.05 (↓) | 50% | 1.66 x 10 ⁻⁸ | | rs3923387_T | C/C | 0.06 (-) | 31% | 1.76 × 10 ⁻⁸ | | rs61708525_G | A / A | 0.07 (-) | 30% | 1.80 x 10 ⁻⁸ | | rs12211604_A | A / A | -0.06 (↓) | 48% | 2.15 x 10 ⁻⁸ | | rs11578655_T | T/T | -0.08 (↓) | 89% | 2.89 x 10 ⁻⁸ | | rs2469434_T | T/C | -0.05 (↓) | 58% | 2.92 x 10 ⁻⁸ | | rs55858457_G | G / G | -0.06 (↓) | 59% | 2.95 x 10 ⁻⁸ | | rs32658_G | G / T | -0.06 (↓) | 63% | 3.24 × 10 ⁻⁸ | | rs1415069_C | G / G | -0.07 (-) | 80% | 3.32 × 10 ⁻⁸ | | rs1365120_T | C/T | -0.09 (↓) | 74% | 4.06 x 10 ⁻⁸ | | rs17741873_G | G / G | 0.07 (1) | 82% | 4.69 x 10 ⁻⁸ | | rs9900529_C | G / G | 0.06 (-) | 39% | 4.76 x 10 ⁻⁸ | | rs3093982_T | NA | 0.10 (-) | < 1% | 4.95 x 10 ⁻⁸ | | rs10936182_T | NA | 0.09 (-) | < 1% | 4.99 x 10 ⁻⁸ | | | | | | | N/A indicates variants that could not be imputed using the 1000 genomes project datasets and variants that have a frequency of < 5%. Your genome was sequenced at 30x/100x coverage and is not imputed. However, to calculate percentiles, we need to compare your data with other users imputed data. To make the data comparable, we need to exclude some of the variants from your data.